# An Experimental Study of Carbon-13 Isotope Effects on Proton Nuclear Magnetic Resonance Chemical Shifts

# Jeremy R. Everett\*

Beecham Pharmaceuticals Research Division, Brockham Park, Betchworth, Surrey RH3 7AJ

Small negative, one-bond, carbon-13 isotope effects on proton n.m.r. chemical shifts, *i.e.*  ${}^{1}\Delta^{1}H({}^{13}C)$  values have been measured for a variety of compounds. A linear correlation between  ${}^{1}\Delta^{1}\Delta H({}^{13}C)$  and  ${}^{1}J_{CH}$  was discovered. Three compounds with short C–H bonds were found to deviate from the correlation. The behaviour of  ${}^{1}\Delta^{1}H({}^{13}C)$  was compared with that of  ${}^{1}\Delta^{19}F({}^{13}C)$  and  ${}^{1}\Delta^{13}C({}^{2}H)$ .

Carbon-13 isotope effects ( $\Delta$ s) on n.m.r. signals were first recognised in <sup>19</sup>F n.m.r. spectra in 1959.<sup>1</sup> Since that time numerous reports of both one-bond [ $^{1}\Delta^{19}F(^{13}C)$ ] and two-bond effects [ $^{2}\Delta^{19}F(^{13}C)$ ] in <sup>19</sup>F n.m.r. spectra have appeared.<sup>2–8</sup> The situation was reviewed in 1967.<sup>9</sup> One bond <sup>13</sup>C isotope effects have also been found in the n.m.r. spectra of a variety of other nuclei. These nuclei include <sup>59</sup>Co,<sup>10,11</sup> <sup>77</sup>Se,<sup>12,13</sup> <sup>125</sup>Te,<sup>12,13</sup> <sup>13</sup>C,<sup>14–22</sup> <sup>31</sup>P,<sup>16,23</sup> <sup>113</sup>Cd,<sup>24</sup> <sup>111</sup>Cd,<sup>24</sup> <sup>199</sup>Hg,<sup>25,26</sup> and <sup>15</sup>N.<sup>27</sup> Carbon-13 isotope effects in <sup>1</sup>H n.m.r. spectra were first reported in 1960<sup>28</sup> and since that time many other reports have appeared.<sup>29–39</sup>

Most <sup>13</sup>C  $\Delta$ s are small and upfield but there are a number of exceptions to this generalisation. The few reported <sup>1 $\Delta$ 113</sup>Cd(<sup>13</sup>C),<sup>1 $\Delta$ 111</sup>Cd(<sup>13</sup>C), and <sup>1 $\Delta$ 199</sup>Hg(<sup>13</sup>C) values <sup>24-26</sup> have all been downfield. Downfield <sup>1 $\Delta$ 13</sup>C(<sup>13</sup>C) and <sup>2 $\Delta$ 13</sup>C (<sup>13</sup>C) values have also been reported <sup>17,21,22</sup> when the *observed* carbon atom is substituted by an oxygen atom. The magnitude of the <sup>13</sup>C isotope effect over one bond varies widely with the observed nucleus. The smallest <sup>1 $\Delta$ </sup>s are <sup>1 $\Delta$ 1</sup>H(<sup>13</sup>C) values which vary from 0 to -3 p.p.b. By contrast <sup>1 $\Delta$ 77Se(<sup>13</sup>C) values have been reported to range between -12 and -1099 p.p.b. As a consequence of their small magnitude no systematic and precise study of <sup>1 $\Delta$ 1</sup>H(<sup>13</sup>C) has been reported to date. In this work a large number of organic compounds have been studied in order to obtain more precise <sup>1 $\Delta$ 1</sup>H(<sup>13</sup>C) values for protons attached to *sp*<sup>3</sup> carbon atoms.</sup>

#### Results

The Table gives all the experimental  ${}^{1}\Delta^{1}H({}^{13}C)$  and  ${}^{1}J_{CH}$  values for the compounds studied.

# Experimental

All the compounds are commercially available and were used without further purification as 5M solutions in  $C_6D_6$ . The <sup>1</sup>H n.m.r. spectra were taken at ambient temperature, in 5 mm tubes, at 200 MHz on a Varian XL-200 or at 250 MHz on a Brüker WM-250 instrument. The WM-250 experiments were conducted with a sweep width of 250—400 Hz. 16—1 300 scans were accumulated into 4 K of computer memory. The F.I.D.s were zero-filled to 16 or 32 K prior to line broadening of up to 0.1 Hz and Fourier transformation. Each experiment was repeated between eight and 17 times and the results were averaged. The errors given are  $\pm 2\sigma$  where  $\sigma$  is the standard deviation.

The XL-200 experiments were conducted with a sweep width of 300—600 Hz. The acquisition time was 8 s except for CHDCl<sub>2</sub> (2 s). The f.i.d.s were acquired in double precision (32 bit words) and were zero filled to 16 K prior to Fourier transformation using floating point mathematics. The number of scans was 32 except for CHCl<sub>3</sub> (16) and CHDCl<sub>2</sub> (4 300,

| Table. <sup>1</sup> J <sub>CH</sub> and | $1^{1}\Delta^{1}H($ | <sup>13</sup> C) values |
|-----------------------------------------|---------------------|-------------------------|
|-----------------------------------------|---------------------|-------------------------|

| Compound                                                                                                  | <sup>1</sup> J <sub>CH</sub> Hz | <sup>1</sup> Δ <sup>1</sup> H( <sup>13</sup> C) (p.p.b.) |  |
|-----------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|--|
| CHCL                                                                                                      | 210.09                          | -2.28                                                    |  |
| 011013                                                                                                    | $210.06 + 0.01^{a}$             | -2.35 + 0.02                                             |  |
| CHBr                                                                                                      | 205.73                          | -2.42                                                    |  |
| CH <sub>2</sub> Cl <sub>2</sub>                                                                           | 177.82                          | -2.56                                                    |  |
| 22                                                                                                        | $178.00 + 0.02^{a}$             | $-2.6 \pm 0.6$                                           |  |
| CHDCl                                                                                                     | 177.58                          | -2.73                                                    |  |
| 2                                                                                                         | $177.91 + 0.02^{a,b}$           | -2.85 + 0.03                                             |  |
| CH                                                                                                        | 172.64                          | -2.91                                                    |  |
| CLCCHOH                                                                                                   | 151.44                          | - 2.01                                                   |  |
| CHJ                                                                                                       | 150.95                          | - 1.99                                                   |  |
| 3-                                                                                                        | $151.114 + 0.004^{a}$           | $-2.13 \pm 0.05$                                         |  |
| CH-OCOCI                                                                                                  | 149.81                          | -2.13                                                    |  |
| CH <sub>1</sub> NO <sub>2</sub>                                                                           | 145.85                          | -1.85                                                    |  |
| CH-SO-Cl                                                                                                  | 142.83                          | -1.99                                                    |  |
| CH <sub>1</sub> OD                                                                                        | 140.80                          | - 1.76                                                   |  |
| - 5                                                                                                       | $140.52 \pm 0.04^{a}$           | $-1.98 \pm 0.04$                                         |  |
| CH <sub>3</sub> OH                                                                                        | $140.77 \pm 0.12$               | $-1.79 \pm 0.33$                                         |  |
| (CH,),SO                                                                                                  | 137.17                          | -1.67                                                    |  |
| CH <sub>2</sub> CN                                                                                        | 135.95                          | -1.24                                                    |  |
| 5                                                                                                         | 135.94 ± 0.01°                  | $-1.92 \pm 0.13$                                         |  |
| CH <sup>1</sup> COCl                                                                                      | 132.77                          | - 1.60                                                   |  |
| CH'CO'H                                                                                                   | 129.34                          | -1.55                                                    |  |
| (CH,),CO                                                                                                  | 126.61                          | -1.18                                                    |  |
| ( ),2                                                                                                     | $126.74 \pm 0.02^{a.c}$         | $-1.5 \pm 0.2$                                           |  |
| (CH <sub>3</sub> )₄Si                                                                                     | 118.11                          | -0.54                                                    |  |
|                                                                                                           | 118.14 ± 0.06°                  | $-0.94 \pm 0.12$                                         |  |
| WM-250 instrument. <sup>b 2</sup> $J_{HD}$ ca. 1.09 $\pm$ 0.01. <sup>c 4</sup> $J_{H.H}$ 0.55 $\pm$ 0.01. |                                 |                                                          |  |

measured as impurity in  $CD_2Cl_2$ ). Each experiment was repeated five times except for  $CHCl_3$ ,  $CH_3CO_2H$ , and  $CH_3OD$ (10 times) and the results were averaged. The experiment on  $CH_3OH$  was repeated 30 times in order to establish meaningful error limits. The errors on all the XL-200 results were then taken to be plus and minus twice the standard deviation found in the  $CH_3OH$  experiments. These error limits are thought to be generous.

#### Discussion

Figure 1 shows the experimental  ${}^{1}\Delta^{1}H({}^{13}C)$  values plotted as a function of  ${}^{1}J_{CH}$  for each molecule studied. With the exception of the data for CHCl<sub>3</sub>, CHBr<sub>3</sub>, and CH<sub>2</sub>Cl<sub>2</sub> it was found that a linear correlation existed between  ${}^{1}\Delta^{1}H({}^{13}C)$  and  ${}^{1}J_{CH}$ . This relationship is described by equation (1). The correlation

 ${}^{1}\Delta^{1}H$  ( ${}^{13}C$ ) = 3.35 - 3.64 × 10<sup>-2</sup>. ${}^{1}J_{CH}$  p.p.b. (1)

coefficient for the 19 data points in the regression was -0.93 (valid at >99.9% confidence level). This correlation has an interesting parallel in the work of Frankiss,<sup>6.8,9</sup> who discovered



**Figure 1.**  ${}^{1}\Delta^{1}H({}^{13}C)$  (p.p.b.) versus  ${}^{1}J_{CH}$  Hz.  $\bigcirc$ , XL-200 instrument;  $\Box$ , WM-250 instrument

a similar correlation between  ${}^{1}\Delta^{19}F({}^{13}C)$  and  ${}^{1}J_{CF}$  for both  $sp^{3}$  C-F and  $sp^{2}$  C-F bonds. The equation for  $sp^{3}$  C-F bonds was (2). The magnitudes of  ${}^{1}J_{CF}$  and  ${}^{1}J_{CH}$  reflect both the

$${}^{1}\Delta^{19}F({}^{13}C) = -(7 + 0.436{}^{1}J_{CF}) \text{ p.p.b.}$$
(2)

hybridisation and the electron distribution of the C-F and C-H bonds respectively. The fact that  ${}^{1}\Delta$  correlates with  ${}^{1}J$  may indicate that these two factors are also important in determining the magnitude of  ${}^{1}\Delta$ .

As stated above, the points for CH<sub>2</sub>Cl<sub>2</sub>, CHCl<sub>3</sub>, and CHBr<sub>3</sub> fall above the plotted line and show a positive deviation from equation (1). It may be significant that these three compounds have the shortest C-H bond lengths of any of the compounds studied. Sutton 40 gives these bond lengths as ca. 1.07 Å, whereas the majority of the other compounds studied have C-H bond lengths between 1.09 and 1.10 Å. The C-H bond length in  $CH_2I_2$  could not be discovered. Another interesting parallel with the work of Frankiss<sup>6,8</sup> now presents itself. In this latter work *negative* deviations (-40 to -20 p.p.b.) from the plot of  ${}^{1}\Delta^{19}F({}^{13}C)$  versus  ${}^{1}J_{CF}$  were seen for  $CF_2Cl_2$ ,  $CFHCl_2$ , CFCl<sub>3</sub>, and CFBr<sub>3</sub>. Three of these four compounds have longer C-F bonds (ca. 1.40-1.44 Å)<sup>40</sup> than the majority of the other compounds studied (ca. 1.32-1.36 Å) although CF<sub>2</sub>Cl<sub>2</sub> seems to have a normal C-F bond length (ca. 1.34 Å). Thus, in this work polyhalogenation (halogen = Cl or Br), with the accompanying shortening of C-H bonds, leads to a positive deviation from the  $^{1}\Delta^{1}H(^{13}C)$  versus  $^{1}J_{CH}$  correlation. By contrast, in the work of Frankiss,<sup>6,8</sup> polyhalogenation, with the accompanying length-ening of C-F bonds, lead to a negative deviation from the  ${}^{1}\Delta^{19}\tilde{F}({}^{13}C)$  versus  ${}^{1}J_{CF}$  correlation. The positive deviation of  $(CF_3)_2$ Hg from the correlation of  ${}^{1}\Delta$  with  ${}^{1}J_{CF}$  may be due to hybridisation changes at the carbon atoms.

Direct plots of  ${}^{1}\Delta^{1}H({}^{13}C)$  against r(C-H) or  ${}^{1}\Delta^{19}F({}^{13}C)$ against r(C-F) gave scattered plots but this may have been due to the inaccuracy of some of the bond length data. Recent work in other systems has shown up relationships between  ${}^{1}\Delta$  and bond length. Gombler  ${}^{13}$  found  ${}^{1}\Delta^{77}Se({}^{13}C)$  to be inversely dependent upon  $r(sp{}^{3}C-Se)$  but directly dependent upon  $r(sp{}^{2}C=Se)$  in two small groups of compounds. This result may be compared with an inverse dependence of  ${}^{1}\Delta^{13}C({}^{18}O)$  upon r(C=O), found  ${}^{41}$  in a series of acetophenones.

The results for  ${}^{1}\Delta^{1}H({}^{13}C)$  may also be compared with those previously found for  ${}^{1}\Delta^{13}C({}^{2}H)$ .  ${}^{1}\Delta^{13}C({}^{2}H)$  values are *ca*. two orders of magnitude larger than  ${}^{1}\Delta^{1}H({}^{13}C)$  values and a much larger body of literature exists. However, much of the literature data is imprecise  ${}^{42}$  and must be viewed with caution. Figure 2 shows a graph of a collection of literature  ${}^{1}\Delta^{13}C({}^{2}H)$  values



**Figure 2.**  ${}^{1}\Delta^{13}C({}^{2}H)$  (p.p.b.) versus  ${}^{1}J_{CH}$  Hz for  $sp^{3}$  ( $\bigcirc$ ) and  $sp^{2}$  ( $\square$ ) hybridised carbon atoms. The solid square is the data point for cyclopropane

against  ${}^{1}J_{CH}$ . Although the data  $sp^{3}$  carbon atoms is quite scattered, a positive correlation of  ${}^{1}\Delta$  with  ${}^{1}J$  can just be discerned [correlation coefficient 0.42 (>99% confidence) for 43 selected, higher accuracy points, excluding CHCl<sub>3</sub>, CHBr<sub>3</sub>, and CH<sub>2</sub>Cl<sub>2</sub>]. This has been reported previously<sup>43</sup> but for a limited set of four cycloalkanes. Figure 2 shows that the effect is more general. The data for  $sp^{2}$  carbons is rather less scattered and shows a positive correlation of  ${}^{1}\Delta$  with  ${}^{1}J$  according to equation (3). The correlation coefficient for 26 points was 0.72

$$^{1}\Delta = 5.92^{1}J_{\rm CH} - 1\ 240\ \rm p.p.b.$$
 (3)

(>99.9% confidence). The line for the  $sp^2$  carbons is displaced towards larger  ${}^{1}J_{CH}$  relative to the crude line for  $sp^3$  carbons and again this is analogous to the behaviour found by Frankiss in his correlations of  ${}^{1}\Delta^{19}F({}^{13}C)$  against  ${}^{1}J_{CF}$ . It is also clear from Figure 2 that the points for CH<sub>2</sub>Cl<sub>2</sub>, CHCl<sub>3</sub>, and CHBr<sub>3</sub> deviate markedly from the other  $sp^3$  points. It is proposed here that these differences in behaviour may be due to bond length differences in the molecules concerned. It has already been mentioned that r(C-H) in CH<sub>2</sub>Cl<sub>2</sub>, CHCl<sub>3</sub>, and CHBr<sub>3</sub> is shorter than r(C-H) in any of the other  $sp^3$  hybridised molecules. The marked deviation of the data points for CH<sub>2</sub>Cl<sub>2</sub> in Figure 2 was taken as additional support for treating the CH<sub>2</sub>Cl<sub>2</sub> and CHDCl<sub>2</sub> data points in Figure 1 as deviant when in fact they are borderline.

Finally, the opposed variation of  ${}^{1}\Delta^{1}H({}^{13}C)$  and  ${}^{1}\Delta^{13}C({}^{2}H)$  with  ${}^{1}J$  has been briefly commented on previously<sup>44</sup> but no explanation has been advanced.

#### Conclusions

A correlation has been shown to exist between  ${}^{1}\Delta^{1}H({}^{13}C)$  and  ${}^{1}J_{CH}$ . Compounds with unusually short C–H bond lengths were found to deviate from this correlation. Analogous behaviour was found for  ${}^{1}\Delta^{19}F({}^{13}C)$  and  ${}^{1}\Delta^{13}C({}^{2}H)$  upon examination of the literature  ${}^{1}\Delta$  values.

### Acknowledgements

I am indebted to Professors A. S. Perkin and A. Shaver for support and encouragement during my stay at McGill University, Montreal.

# J. CHEM. SOC. PERKIN TRANS. II 1984

#### References

- 1 G. V. D. Tiers, J. Phys. Soc. Jpn., 1960, 15, 354.
- 2 G. V. D. Tiers, J. Chem. Phys., 1961, 35, 2263.
- 3 G. V. D. Tiers, J. Phys. Chem., 1962, 66, 945.
- 4 G. V. D. Tiers and P. C. Lauterbur, J. Chem. Phys., 1962, 36, 1110.
- 5 N. Muller and D. T. Carr, J. Phys. Chem., 1963, 67, 112.
- 6 S. G. Frankiss, J. Phys. Chem., 1963, 67, 752.
- 7 J. Bacon and R. J. Gillespie, J. Chem. Phys., 1963, 38, 781.
- 8 R. K. Harris, J. Mol. Spectrosc., 1963, 10, 309.
- 9 H. Batiz-Hernandez and R. A. Bernheim, Prog. Nucl. Magn. Reson. Spectrosc., 1967, 3, 63.
- 10 P. C. Lauterbur, J. Chem. Phys., 1965, 42, 799.
- 11 A. Loewenstein and M. Shporer, Mol. Phys., 1965, 9, 293.
- 12 G. Pfisterer and H. Dreeskamp, Ber. Bunsenges. Phys. Chem., 1969, 73, 654.
- 13 W. Gombler, J. Am. Chem. Soc., 1982, 104, 6616.
- 14 F. J. Weigert and J. D. Roberts, J. Am. Chem. Soc., 1972, 94, 6021.
- 15 P. S. Nielsen, R. S. Hansen, and H. J. Jakobsen, J. Organomet. Chem., 1976, 114, 145.
- 16 R. Paasonen, J. Enqist, M. Karhu, E. Rahkamaa, M. Sundberg, and R. Uggla, Org. Magn. Reson., 1978, 11, 42.
- 17 J. Jokisaari, Org. Magn. Reson., 1978, 11, 157.
- 18 V. Wray, L. Ernst, T. Lund, and H. J. Jakobsen, J. Magn. Reson., 1980, 40, 55.
- 19 H. Booth and J. R. Everett, Can. J. Chem., 1980, 58, 2709.
- 20 P. E. Hansen and J. J. Led, Org. Magn. Reson., 1981, 15, 288.
- 21 M. Stöcker, J. Chem. Res. (S), 1982, 124.
- 22 M. Stöcker, Org. Magn. Reson., 1982, 20, 175.
- 23 P. S. Pregosin and R. Kunz, Helv. Chim. Acta, 1975, 58, 423.
- 24 J. Jokisaari, K. Räisänen, L. Lajunen, A. Passoja, and P. Pyykkö, J. Magn. Reson., 1978, 31, 121.

- 25 J. Jokisaari and K. Räisänen, Mol. Phys., 1978, 36, 113.
- 26 K. Grishin and Y. A. Ustynyuk, Zh. Strukt. Khim., 1982, 23, 163.
- 27 R. E. Wasylishen, Can. J. Chem., 1982, 60, 2194.
- 28 J. N. Shoolery, L. F. Johnson, and W. A. Anderson, J. Mol. Spectrosc., 1960, 5, 110.
- 29 H. Dreeskamp and E. Sackmann, Z. Phys. Chem., 1961, 27, 136.
- 30 J. M. Read, R. E. Mayo, and J. H. Goldstein, J. Mol. Spectrosc., 1967, 22, 419.
- 31 J. M. Read, R. W. Crecely, and J. H. Goldstein, J. Mol. Spectrosc., 1968, 25, 107.
- 32 E. W. Garbisch and M. G. Griffith, J. Am. Chem. Soc., 1968, 90, 6543.
- 33 H. Jensen and K. Schaumberg, Mol. Phys., 1971, 22, 1041.
- 34 G. Schrumpf, Chem. Ber., 1973, 106, 246.
- 35 G. Schrumpf, G. Becher, and W. Lüttke, J. Magn. Reson., 1973, 10, 90.
- 36 J. M. A. Al-Rawi, J. A. Elvidge, J. R. Jones, and E. A. Evans, J. Chem. Soc., Perkin Trans. 2, 1975, 449.
- 37 V. A. Chertkov and N. M. Sergeyev, J. Am. Chem. Soc., 1977, 99, 6750.
- 38 P. Diehl and H. Bösiger, J. Magn. Reson., 1979, 35, 367.
- 39 J. Runsink and H. Günther, Org. Magn. Reson., 1980, 13, 249.
- 40 L. E. Sutton, 'Tables of Interatomic Distances and Configuration in Molecules and Ions,' Special Publications, Nos. 11 and 18, The Chemical Society, London, 1958 and 1965.
- 41 J. M. Risley, S. A. DeFrees, and R. L. Van Etten, Org. Magn. Reson., 1983, 21, 28.
- 42 J. R. Everett, Org. Magn. Reson., 1982, 19, 169.
- 43 R. Aydin and H. Günther, J. Am. Chem. Soc., 1981, 103, 1301.
- 44 Y. K. Griskin, N. M. Sergeyev, and Y. A. Ustynyuk, *Mol. Phys.*, 1971, 22, 711.

Received 7th July 1983; Paper 3/1165